Synthesis of 5,5'-(arylmethylene)bis(pyrimidinone) derivatives in aqueous media

Da-Oing Shia ${ }^{\text {,b* }}$, Li-Hui Niu ${ }^{\text {b }}$ and Qi -Ya Zhuang ${ }^{\text {b }}$
${ }^{a}$ College of Chemistry and Chemical Engineering, Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, Suzhou 215123, P.R. China
${ }^{\text {b }}$ College of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, P.R. China

The condensation and addition reactions of aromatic aldehydes and 4,6-dihydroxypyrimidine or 2,4-dihydroxy-6aminopyrimidine in water in the presence of triethylbenzylammonium chloride (TEBAC) afford a one-pot synthesis of 5,5'-(arylmethylene)bis[6-hydroxypyrimidine-4(3H)-one]s and 5,5'-(arylmethylene)bis[6-aminopyrimidine-2,4 $(1 \mathrm{H}, 3 \mathrm{H})$-dione]s. These compounds were characterised by elemental analysis and IR and ${ }^{1} \mathrm{H}$ NMR spectra and further confirmed by a single crystal X-ray diffraction analysis.

Keywords: 5,5'-(arylmethylene)bis(pyrimidinone), aromatic aldehyde, 4,6-dihydroxypyrimidine, 2,4-dihydroxy-6-aminopyrimidine, aqueous media

The importance of uracil and its annelated derivatives is well recognised by synthetic ${ }^{1-4}$ as well as biological ${ }^{5-10}$ chemists. With the development of clinically useful anticancer and antiviral drugs, ${ }^{11-14}$ there has recently been remarkable interest in the synthetic manipulations of uracils. ${ }^{15-17}$ Jiang and Roberts ${ }^{18}$ reported the synthesis of $5,5^{\prime}-\{$ (perfluorophenyl) methylene $\}$ bis(6 -amino-1,3-dimethylpyrimidine-2,4-dione) in glacial acetic acid under nitrogen. But the yield was only 44%. Azizian et al. ${ }^{19}$ reported the synthesis of bis(6 -aminopyrimidonyl)methanes using thermal (in ethanol at $80^{\circ} \mathrm{C}$) or microwave-assisted solvent-free methods. Moskvin et al. ${ }^{20}$ reported the synthesis of 5,5'-methylenebis(4,6-dihydroxy-2methylthiopyrimidines) by condensation of 4,6-dihydroxy-2-methylthiopyrimidine with formaldehyde and aromatic or heterocyclic aldehydes in ethanol. However, they were reacted in organic solvents or had low yields. ${ }^{18}$

The need to reduce the amount of toxic waste and byproducts arising from chemical processes requires increasing emphasis on the use of less toxic and environmentally compatible materials in the design of new synthetic methods. ${ }^{21-23}$ In one of the most promising approaches, water is used as the reaction medium. ${ }^{24-26}$ Breslow and Rideout, ${ }^{27,28}$ showed that hydrophobic effects could strongly enhance the rate of several organic reactions and rediscovered the use of water as a solvent in organic chemistry in the 1980s. In recent years, there has been increasing recognition that water is an attractive medium for many organic reactions. ${ }^{29-34}$ The aqueous medium is less expensive, less dangerous and more environment-friendly than an organic solvent. Generally, the low solubility ${ }^{35}$ of most reagents in water is not an obstacle to reactivity, which on the contrary, is reduced with the use of cosolvents. Based on our previous studies on the use of water as the solvent for carrying out carbon-carbon bond-forming reactions under heterogeneous catalysis, ${ }^{36-39}$ we report here a novel synthesis of 5,5'-(arylmethylene)bis(pyrimidinone) derivatives using water as the reaction medium.

When aromatic aldehydes 1 and 4,6-dihydroxypyrimidine 2 were stirred at $90^{\circ} \mathrm{C}$ for $8-14 \mathrm{~h}$ in water in the presence of triethylbenzylammonium chloride (TEBAC), the desired products 5,5'-(arylmethylene)bis[6-hydroxypyrimidine-4(3H)one]s 3 were obtained in moderate to good yields (Scheme 1). The results are summarised in Table 1.

Similarly, the reaction of aromatic aldehyde 1 and 2,4-dihydroxy-6-aminopyrimidine 4 under the same reaction conditions afforded 5,5'-(arylmethylene)bis[6-aminopyrimidine-2,4(1H,3H)-dione]s 5 (Scheme 2) and the results are summarised in Table 2.

[^0]

Table 1 The syntheses of $\mathbf{3}$ in aqueous media

Entry	Ar	\mathbf{t} / h	Isolated yield/\%
3a	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	10	79
3b	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	9	62
3c	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	12	73
3d	$4-\mathrm{HOC}_{6} \mathrm{H}_{4}$	12	86
3e	$3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	14	75
3f	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	8	84

Scheme 2

Table 2 The syntheses of 5 in aqueous media

Entry	Ar	t/h	Isolated yield/\%
5a	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	8	96
5b	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	6	94
5c	$2-\mathrm{ClCl}_{6} \mathrm{H}_{4}$	12	81
5d	$4-\mathrm{Cl}_{6} \mathrm{H}_{4}$	10	86
5e	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	8	91

The structures of the compounds 3 and 5 were established on the basis of spectroscopic data, particularly ${ }^{1} \mathrm{H}$ NMR analysis. The structure of $\mathbf{3 c}$ was further confirmed by X-ray diffraction analysis. Crystallographic data are presented in Table 3. An ORTEP plot and the atom numbering are given in Fig. 1. The structure exhibits intermolecular hydrogen bonds: N2-H...O2 $(-x+2,-y,-z)$, N3-H...N1 $(x-1 / 2,-y+1 / 2$, $z-1 / 2)$ and $\mathrm{O} 1-\mathrm{H} \ldots \mathrm{O} 3(x+1 / 2,-y+1 / 2, z+1 / 2)$ and an intramolecular hydrogen bond: $\mathrm{O} 4-\mathrm{H} . . \mathrm{O} 1$, which helps in stabilising the crystal structure.

Table 3 Crystal data and structure refinement of compound 3c

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected Independent reflections Absorption correction

Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices [>2 sigma(I)]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{39} \mathrm{H}_{43} \mathrm{~N}_{13} \mathrm{O}_{15}$
933.86
$298(2) \mathrm{K}$
$0.71073 \AA$
Monoclinic
$\mathrm{P} 2_{1} / \mathrm{n}$
$a=11.6719(15) \AA \alpha=90^{\circ}$
$b=15.0583(18) \AA \beta=$
$93.631(2)^{\circ}$
$c=12.6443(16) \AA \gamma=90^{\circ}$
$2217.9(5) \AA^{3}$
2
$1.398 \mathrm{mg} / \mathrm{m}^{3}$
0.110 mm
976
$0.31 \times 0.25 \times 0.13 \mathrm{~mm}$
2.45 to 25.03°
$-13 \leq h \leq 13,-17 \leq k \leq 17$,
$-8 \leq / \leq 15$
11498
$3912[R($ int $)=0.0343]$
Semi-empirical from
equivalents
$\mathrm{Full}-\mathrm{matrix}$ least-squares on F^{2}
$3912 / 0 / 344$
1.058
$\mathrm{R}^{1}=0.0571, \mathrm{wR}^{2}=0.1538$
$\mathrm{R}^{1}=0.0994, \mathrm{wR}^{2}=0.1920$
0.439 and -0.482 e \AA^{-3}

Fig. 1 The X-ray crystal structure of compound 3c.

General procedure for the synthesis of 5,5'-(arylmethylene)bis (pyrimidinone) (3 and 5): A mixture of aromatic aldehyde (1) (2 mmol), 4,6-dihydroxypyrimidine (2) or 2,4-dihydroxy-6aminopyrimidine (4) (4 mmol) and TEBAC (0.15 g) in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was stirred for $6-14 \mathrm{~h}$ at $90^{\circ} \mathrm{C}$, then cooled to room temperature. The crystalline powder formed was collected by filtration, washed with water and recrystallised from DMF and dried at $120^{\circ} \mathrm{C}$ in vacuo to give pure 3 or 5 .

5,5'-(3-nitrophenylmethylene)bis[6-hydroxypyrimidine-4(3H)-one] (3a): M.p. $266-268^{\circ} \mathrm{C}$. IR: v/cm ${ }^{-1} 3500-2400,1684,1610,1560$, $1441,1382,1350,1288,1220,1140,1095,1059,927,898,867,823$, 789, 756, 721, 694. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.48-$ $7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.78(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.03(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH})$, $8.21\left(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}^{2}-\mathrm{H}\right), 12.65(4 \mathrm{H}$, br., s, $2 \times \mathrm{OH}, 2 \times \mathrm{NH})$. Found: C, $50.56 ; \mathrm{H}, 3.02 ; \mathrm{N}, 19.45$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{6}$: C, $50.43 ; \mathrm{H}, 3.10$; N, 19.60\%.

5,5'-(4-bromophenylmethylene)bis[6-hydroxypyrimidine-4(3H)one] (3b): M.p. $258-260^{\circ} \mathrm{C}$. IR: v/cm ${ }^{-1} 3200-2500,1653,1558$, $1487,1448,1397,1294,1243,1134,1096,1073,1009,916,845$, $793,698 .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.94(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 8.14(2 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{C}^{2}-\mathrm{H}\right), 12.59(4 \mathrm{H}$, br., s, $2 \times \mathrm{OH}, 2 \times \mathrm{NH})$. Found: C, $46.28 ; \mathrm{H}, 2.91$; $\mathrm{N}, 14.17$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}_{4}: \mathrm{C}, 46.06 ; \mathrm{H}, 2.83 ; \mathrm{N}, 14.32 \%$.

5,5'-(2-nitrophenylmethylene)bis[6-hydroxypyrimidine-4(3H)one] (3c): M.p. $>300^{\circ} \mathrm{C}$. IR: v/ $\mathrm{cm}^{-1} 3200-2500,1652,1620,1566$, $1522,1470,1431,1386,1361,1308,1250,1234,1098,1061,903$, $855,835,804,780,724 .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$, $7.22(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.52$ $(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.65(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 8.10(2 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{C}^{2}-\mathrm{H}\right), 12.23(4 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{OH}, 2 \times \mathrm{NH})$. Found: C, 50.32 ; $\mathrm{H}, 3.04 ; \mathrm{N}, 19.34$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{6}: \mathrm{C}, 50.43 ; \mathrm{H}, 3.10 ; \mathrm{N}, 19.60 \%$.

5,5'-(4-hydroxyphenylmethylene)bis[6-hydroxypyrimidine-4(3H)one] (3d): M.p. $>300^{\circ} \mathrm{C}$. IR: v/cm ${ }^{-1} 3500-2500,1674,1620,1557$, $1512,1445,1391,1291,1243,1173,1095,1060,912,837,793,775$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.60(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{ArH}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.10\left(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}^{2}-\mathrm{H}\right), 9.07$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 12.52(4 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{OH}, 2 \times \mathrm{NH})$. Found: C, 55.02 ; $\mathrm{H}, 3.61 ; \mathrm{N}, 17.29$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5}: \mathrm{C}, 54.88 ; \mathrm{H}, 3.68 ; \mathrm{N}, 17.07 \%$.

Scheme 3

5,5'-(3,4-dichlorophenylmethylene)bis[6-hydroxypyrimidine$4(3 H)$-one] (3e): M.p. $275-276^{\circ} \mathrm{C}$. IR: v/cm ${ }^{-1} 3500-2500,1668$, $1560,1470,1429,1388,1294,1232,1134,1096,1059,1029,921$, 808, 791, 747, 725. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.14(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.99$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.14(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.47(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\mathrm{ArH}), 8.17\left(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}^{2}-\mathrm{H}\right), 12.63(4 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{OH}, 2 \times \mathrm{NH})$. Found: C, 47.18; H 2.75; $\mathrm{N}, 14.83$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$: C, 47.27; H, 2.64; N, 14.70\%.

5,5'-(4-nitrophenylmethylene) bis[6-hydroxypyrimidine-4(3H)one] (3f): M.p. $257-259^{\circ} \mathrm{C}$. IR: $\mathrm{v} / \mathrm{cm}^{-1} 3200-2500,1672,1632,1558$, 1529, 1437, 1388, 1345, 1291, 1138, 1095, 1058, 911, 854, 830, 794, 764, 724. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.27(2 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.10(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}), 8.20\left(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{C}^{2}-\mathrm{H}\right)$, $12.66(4 \mathrm{H}, \mathrm{br}$., s, $2 \times \mathrm{OH}, 2 \times \mathrm{NH}$). Found: C 50.35 ; H 2.95 ; N 19.43. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{6}$: C 50.43; H 3.10; N 19.60\%.

5,5'-(3-nitrophenylmethylene)bis[6-aminopyrimidine-2,4(1H,3H)dione] (5a): M.p. > $300^{\circ} \mathrm{C}$. IR: v/cm ${ }^{-1} 3421,3311,3242,3189,3074$, 2988, 1699, 1623, 1592, 1539, 1458, 1393, 1338, 1290, 1234, 1192, 1093, 1014, 930, 852, 828, 794, 762, 733, 708. ${ }^{1}$ H NMR (DMSO- d_{6}): $\delta 6.01\left(4 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{NH}_{2}\right), 6.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.59(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}$, $\mathrm{ArH}), 7.79(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.08(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$, $8.23(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 10.07(2 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{NH}), 10.44(2 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{NH})$. Found: $\mathrm{C}, 46.75 ; \mathrm{H}, 3.52 ; \mathrm{N}, 25.17$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{6}$: C, 46.52; H, 3.38; N, 25.32\%.

5,5'-(4-nitrophenylmethylene)bis[6-aminopyrimidine-2,4(1H,3H)dione] (5b): M.p. $>300^{\circ} \mathrm{C}$. IR: $\mathrm{v} / \mathrm{cm}^{-1} 3444,3312,3167,1708,1641$, 1624, 1600, 1532, 1518,1457, 1403, 1351, 1233, 1175, 1108, 1050, 871, $829,763,737,706 .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 5.98\left(4 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{NH}_{2}\right.$), $6.20(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.64(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 8.17(2 \mathrm{H}, \mathrm{d}$, $J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 10.07(2 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{NH}), 10.44(2 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{NH})$. Found: C, 46.43; H, 3.46; $\mathrm{N}, 25.16$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{6}$: C, 46.52; H, 3.38; N, 25.32\%.

5,5'-(2-chlorophenylmethylene)bis[6-aminopyrimidine-2,4 ($1 \mathrm{H}, 3 \mathrm{H}$)-dione] (5c): M.p. $>300^{\circ} \mathrm{C}$. IR: $\mathrm{v} / \mathrm{cm}^{-1} 3365,3170,1714$, 1654, 1634, 1595, 1455, 1391, 1168, 1092, 1024, 886, 775. ${ }^{1}$ H NMR (DMSO- d_{6}): $\delta 5.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.70\left(4 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{NH}_{2}\right), 7.03-7.07$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.25(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}$, $\mathrm{ArH}), 10.33(2 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{NH}), 10.55(2 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{NH})$. Found: C, 47.97; H, 3.53; N, 22.48. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{6} \mathrm{O}_{4}: \mathrm{C}, 47.82 ; \mathrm{H}$, 3.48; N 22.31%.

5,5'-(4-chlorophenylmethylene)bis[6-aminopyrimidine-2,4 ($1 \mathrm{H}, 3 \mathrm{H}$)-dione] (5d): M.p. $>300^{\circ} \mathrm{C}$. IR: $\mathrm{v} / \mathrm{cm}^{-1} 3336,3164,1715$, $1635,1551,1529,1522,1489,1457,1393,1296,1240,1179,1093$, 1022, 911, 841, 774. ${ }^{1}$ H NMR (DMSO- d_{6}): $\delta 5.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.17$ ($4 \mathrm{H}, \mathrm{br}$, s, $2 \times \mathrm{NH}_{2}$), $7.09(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.25(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 10.07(2 \mathrm{H}, \mathrm{br} ., \mathrm{s}, 2 \times \mathrm{NH}), 10.52(2 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{NH})$. Found: C 48.02; H 3.35; N 22.19. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{6} \mathrm{O}_{4}$: C, 47.82; H, 3.48; N, 22.31\%.

5,5'-(3-chlorophenylmethylene)bis[6-aminopyrimidine-2,4 ($1 \mathrm{H}, 3 \mathrm{H}$)-dione] (5e): M.p. $>300^{\circ} \mathrm{C}$. IR: $\mathrm{v} / \mathrm{cm}^{-1} 3279,3156,1709$, 1658, 1623, 1523, 1456, 1394, 1217, 1180, 1154, 1096, 807, 784. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 5.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.70\left(4 \mathrm{H}, \mathrm{br}\right.$., s, $2 \times \mathrm{NH}_{2}$), $7.06(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.17(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.25(1 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 10.33(2 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{NH}), 10.53(2 \mathrm{H}, \mathrm{br}, \mathrm{s}, 2 \times \mathrm{NH})$. Found: C, $47.73 ; \mathrm{H}, 3.34 ; \mathrm{N}, 22.37$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{6} \mathrm{O}_{4}$: C, 47.82; H, 3.48; N, 22.31\%.

X-ray crystal analysis of 3c

X-ray diffraction data were collected on a BRUKER SMART 1000 CCD detector with graphite-monochromatised $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) for compound 3c. The structures have been solved by direct methods using the program SHELXL 97^{40} and Fourier difference techniques. Refinement has been by full-matrix leastsquares method on F^{2} using SHELXL $97 .{ }^{41}$ CCDC 705256 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request.cif.

We are grateful to the "Surpassing Project" Foundation of Jiangsu Province and the Foundation of the Key Laboratory of Biotechnology on Medical Plants of Jiangsu Province for financial support.

Received 21 April 2008; accepted 25 October 2008
Paper 08/5229 doi: 10.3184/030823408X390190
Published online: 17 December 2008

References

1 T.K. Bradshaw and D.W. Hutchison, Chem. Soc. Rev., 1977, 6, 43.
2 T. Sasaki, K. Minamoto, T. Suzuki and S. Yamashita, Tetrahedron, 1980, 36, 865.
3 D. Prajapati, P.J. Bhuyan and J.S. Sandhu, J. Chem. Soc., Perkin Trans. I, 1988, 607.
4 P.J. Bhuyan, H.N. Borah and J.S. Sandhu, J. Chem. Soc., Perkin Trans. I, 1999, 3083.
5 R. Marumoto and Y. Furukawa, Chem. Pharm. Bull., 1997, 25, 2974.
6 R. Grieng1, E. Wack, W. Schwarz, W. Streicher, B. Rosenwirth and E.D. Clercq, J. Med. Chem., 1987, 30, 1199.

7 E.D. Clercq and R. Bernaerts, J. Biol. Chem., 1987, 262, 14905.
8 A.S. Jones, J.R. Sayers, R.T. Walker and E.D. Clercq, J. Med. Chem., 1988, 31, 268.
9 H. Mitsuya, R. Yarchoan and S. Broder, Science, 1990, 249, 1533.
10 R. Pontikis and C. Monneret, Tetrahedron Lett., 1994, 35, 4351.
11 C. Heidelberger and F. Arafield, J. Cancer Res., 1963, 23, 1226.
12 M. Baba, R. Pauwels, P. Herdwig, E.D. Clercq, J. Desmyster and M.Vandepulfe, Biochem. Biophys. Res. Commun., 1987, 142, 128.

13 E.D. Clercq, J. Med. Chem., 1986, 29, 1561.
14 A.S. Jones, G. Verhalst and R.T. Walker, Tetrahedron Lett., 1974, 15, 4415.
15 K. Hirota, Y. Kitade, S. Senda, M.J. Halat, K.A. Watanabe and J.J. Fox, J. Org. Chem., 1981, 46, 846.

16 T.L. Su, J.T. Huang, J.H. Burchanal, K.A. Watanabe and J.J. Fox, J. Med. Chem., 1986, 29, 709.
17 D. Prajapati and J.S. Sandhu, Synthesis, 1988, 342.
18 J.B. Jiang and J. Roberts, J. Heterocyclic Chem., 1985, 22, 159.
19 J. Azizian, M.R. Mohammadizadeh, F. Teimouri, A.A. Mohammadi and A.R. Karimi, Synth. Commun., 2006, 36, 3631.

20 A.V. Moskvin, M.P. Meshcheryakov, N.R. Reznikova, E.V. Fedorova and B.A. Ivin, Russ. J. Gen. Chem., 2002, 72, 1473.

21 J. Amato, Science, 1993, 259, 1538.
22 D.L. Illman, Chem. Eng. News, 1993, 71, 5.
23 D.L. Illman, Chem. Eng. News, 1994, 72, 22.
24 C.J. Li and T.H. Chang, Organic reactions in aqueous media, Wiley, New York, 1997.
25 F. Fringuell, O. Piematti, F. Pizzo and L. Vaccaro, Eur. J. Org. Chem., 2001, 439.
26 S.C. Stinson, Chem. Eng. News, 1996, 74, 39.
27 R. Breslow and D.C. Rideout, J. Am. Chem. Soc., 1980, 102, 7816.
28 R. Breslow, Acc. Chem. Res., 1991, 24, 159.
29 C.J. Li, Chem. Rev., 1993, 93, 2023.
30 R. Ballini and G. Bosica, Tetrahedron Lett., 1996, 37, 8027.
31 R. Ballini, G. Bosica and T. Mecozzi, Tetrahedron, 1997, 53, 1341 .
32 A Meijier, S. Otto and J.B.F.N. Engberts, J. Org. Chem., 1998, 63, 8989.
33 F. Bigi, L. Chesini, R. Maggi and G. Sartori, J. Org. Chem., 1999, 64, 1033.

34 F. Bigi, S. Carloni, L. Ferrari, R. Maggi, A. Mazzacani and G. Sartori, Tetrahedron Lett., 2001, 42, 5203.
35 F. Fringuelli, G. Pani, O. Piermatti and F. Pizzo, Tetrahedron, 1994, 50, 1499.

36 D.Q. Shi, J. Chen, Q.Y. Zhuang, X.S. Wang and H.W. Hu, J. Chem. Res.(S), 2003, 674
37 J. Wang, D.Q. Shi, Q.Y. Zhuang, X.S. Wang and H.W. Hu, J. Chem. Res., 2004, 818.
38 D.Q. Shi, L.H. Niu and Q.Y. Zhuang, J. Chem. Res., $2005,648$.
39 D.Q. Shi, L.H. Niu, X.S. Wang, Q.Y. Zhuang and Y. Zhang, J. Chem. Res., 2005, 224.
40 G.M. Sheldrick, SHELXL-97, Program for the Solution of Crystal Structures University of Gottingen, 1997.
41 G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures University of Gottingen, 1997.

[^0]: * Correspondent. Email: dqshi@263 net

